Printed Page:-04		Subject Code:- AMIAS0201A Roll. No:				
NO	IDA	INSTITUTE OF ENGINEERING A		•		NOIDA
		(An Autonomous Institute Aff		, Lucknov	N)	
		M. 16 SEM: II - THEORY EXAM	ech (Integrated) INATION (2023	8 - 2024)		
		Subject: Engine	·) - 202 4)		
Tim	e: 3 I	Hours			Max. M	larks: 100
Gener	ral In	structions:				
		y that you have received the question po	-			
		stion paper comprises of three Sections	s -A, B, & C. It co	onsists of I	Multiple C	<i>lhoice</i>
		MCQ's) & Subjective type questions.	dan right hands	ide of age	h ayastion	
		n marks for each question are indicated your answers with neat sketches where	-	iae oj eaci	ri quesiton	•
		suitable data if necessary.	ver necessary.			
		ly, write the answers in sequential orde	er.			
6. No .	sheet	should be left blank. Any written mater	ial after a blank :	sheet will i	not be	
evalua	ated/c	hecked.				
SECT	<u> ION</u>	<u>-A</u>				20
1. Atte	empt a	all parts:-				
1-a.	M	Iichelson and Morley experiment show	ed that (CO1)			1
	(a)	Newtonian mechanics is correct for a	ll low and high v	elocities		
	(b)	There is an absolute ether frame	1			
	(c)	There is no absolute ether frame, bu	t all frames are re	elative		
	(d)	Velocity of light is relative in all case	ses			
1-b.	T	the postulates of special theory of relative	vity are applicabl	e to: (CC) 1)	1
	(a)	Accelerated frame				
	(b)	Inertial frame				
	(c)	both				
	(d)	None of above				
1-c.	` /	the momentum of a particle is increase	ed to four times t	hen de-Br	oglie	1
1 0.		vavelength will be (CO2)	or to rour times, t		08110	-
	(a)	Become twice				
	(b)	Become half				
	(c)	Become four times				
	(d)	Become one fourth				
1-d.	` /	article velocity is equal to ? (CO2)				1
1 4.	(a)	Phase velocity				1
	` ′	·				
	(b)	Group velocity				

	(c)	Velocity of light		
	(d)	None of these		
1-e.		wo coherent sources of light produced destructive interference when phase fference between them is (CO3)	1	
	(a)	0		
	(b)	π/2		
	(c)	π/4		
	(d)	π		
1-f.		y observing the diffraction patter, the two images are said to be just resolved hen (CO3)	1	
	(a)	The central maxima of one image coincide with central maxima of the other		
	(b)	The central maxima of one do not coincide with central maxima of the other		
	(c)	The central maxima of one image coincides with the first minimum of the other		
	(d)	The central maxima of one image do not coincide with the first minimum of other		
1-g.	Pe	ermanent memory is (CO4)	1	
	(a)	ROM		
	(b)	RAM		
	(c)	Program Tape		
	(d)	Plain Disc		
1-h.	When a semiconductor is heated its resistance (C04)			
	(a)	Increases		
	(b)	Decreases		
	(c)	Remains Constant		
	(d)	None of above		
1-i.	In	Optical fiber, the inner core is the cladding. (CO 5)	1	
	(a)	Denser than		
	(b)	Less dense than		
	(c)	The same density as		
	(d)	None of above		
1-j.		he ratio of Einstein's coefficients pf spontaneous and stimulated emission varies ith the frequency as: (CO5)	1	
	(a)	ν		
	(b)	$ u^{-1/2}$		
	(c)	$v^{3/2}$		
	(d)	v^3		
2. Att	empt a	all parts:-		
2.a.	W	hat is GPS? (CO1)	2	
2.b.	W	hat are matter waves? (CO2)	2	

2.c.	What is dispersive power? (CO3)	2
2.d.	How conductivity varies with temperature in semiconductors.(CO4)	2
2.e.	What is Spontaneous Emission of radiation? (CO 5)	2
SECTI	ON-B	30
3. Ansv	wer any <u>five</u> of the following:-	
3-a.	At what speed will the mass of a body be 2.25 times its rest mass? (CO1)	6
3-b.	The proper life of a meson is 2×10^{-8} sec. calculate the mean life of a meson moving with a velocity of 0.8c. (CO1)	6
3-c.	Find the energy of an electron moving in one dimensional in an infinitely high potential box of width 1Å. (CO2)	6
3-d.	Calculate the de-Broglie wavelength associated with a proton moving with a velocity equal to $(1/50)$ th of the velocity of light. (CO2)	6
3.e.	Find the minimum number of lines in a plane diffraction grating required to just resolve the sodium doublet (5890 & 5896 Angstrom) in the first order and second order. (CO3)	6
3.f.	In an N-type semiconductor, the fermi level is 0.2 eV below the conduction band at 300K. If the temperature 330K, find the new position of fermi level. (CO4)	6
3.g.	Calculate the numerical aperture, acceptance angle and the critical angle of the optical fibre from the following data: μ (core refractive index) =1.50 and μ (cladding refractive index) = 1.45. (CO5)	6
SECTI	<u>ION-C</u>	50
4. Ansv	wer any <u>one</u> of the following:-	
4-a.	State Einstein's postulates of special theory of relativity. Derive the Lorentz transformation equations. (CO1)	10
4-b.	Derive the expression for relativistic velocity addition theorem. Show that the addition of velocity of light to the velocity of light merely reproduces the velocity of light. (CO1)	10
5. Ansv	wer any <u>one</u> of the following:-	
5-a.	Derive time dependent and time independent Schrödinger equation? (CO2)	10
5-b.	What is uncertainty principle? How will you explain non existence of electrons in the nucleus? (CO2)	10
6. Ansv	wer any <u>one</u> of the following:-	
6-a.	What is resolving power of a plan transmission grating? Derive the expression for it. (CO3)	10
6-b.	Why Newton's rings are circular? Prove that in reflected light: (i) diameters of bright rings are proportional to the square root of odd natural numbers. (ii) Diameters of dark rings are proportional to the square root of natural numbers. (CO3)	10
7. Answ	wer any <u>one</u> of the following:-	

7-a.	What is photovoltaic effect. Explain the construction and working of solar cell. (CO4)	10
7-b.	Differentiate between intrinsic and extrinsic semiconductors. Show that at 0K fermi level lies exactly mid of the valence and conduction band in intrinsic semiconductors? (CO4)	10
8. Answ	rer any <u>one</u> of the following:-	
8-a.	Describe the construction and working of He-Ne Laser. Why He-Ne are superior to ruby laser. (CO5)	10
8-b.	Describe various types of optical fibers on basics of modes and core refractive index? (CO5)	10

